โ† Jiajun Fan / Projects / AC-Flow
๐Ÿ“ Preprint 2025 ยท Under Review

Fine-tuning Flow Matching Generative Models with Intermediate Feedback

AC-Flow: Robust actor-critic framework for flow matching โ€” stable intermediate value learning without collapse

Jiajun Fan1, Chaoran Cheng 1, Shuaike Shen 1, Xiangxin Zhou 1, Ge Liu 1
1University of Illinois Urbana-Champaign
arXiv:2510.18072 ๐Ÿ  Homepage
TL;DR โ€” Existing RLHF methods for flow matching only use outcome rewards (ORW-CFM-W2), suffering from credit assignment problems. AC-Flow introduces a full actor-critic framework with intermediate feedback โ€” reward shaping + dual-stability + generalized critic weighting โ€” achieving SOTA text-to-image alignment on SD3 without degrading diversity or stability.

๐Ÿ”ง Three Key Innovations

1
Reward Shaping
Provides well-normalized learning signals for stable intermediate value learning and gradient control โ€” enabling the critic to reason about multi-step trajectories.
2
Dual-Stability Mechanism
Combines advantage clipping (prevents destructive policy updates) with a critic warm-up phase (lets critic mature before guiding the actor).
3
Generalized Critic Weighting
Extends reward-weighted methods while preserving model diversity via Wasserstein regularization โ€” compatible with ORW-CFM-W2 as a special case.

๐Ÿ”„ AC-Flow vs ORW-CFM-W2

ORW-CFM-W2 (ICLR 2025)

  • Outcome reward only
  • No intermediate value learning
  • Credit assignment challenge
  • First online RLHF for flow matching

AC-Flow (This Work)

  • Intermediate feedback + actor-critic
  • Stable value learning via reward shaping
  • Dual-stability prevents collapse
  • SOTA on SD3 with even less data

AC-Flow generalizes ORW-CFM-W2 โ€” the critic weighting scheme subsumes reward-weighted methods as a special case.

๐Ÿ“– Cite This Paper

@article{fan2025acflow,
  title = {Fine-tuning Flow Matching Generative Models with Intermediate Feedback},
  author = {Jiajun Fan and Chaoran Cheng and Shuaike Shen
           and Xiangxin Zhou and Ge Liu},
  journal = {arXiv preprint arXiv:2510.18072},
  year = {2025},
  url = {https://arxiv.org/abs/2510.18072}
}